La creatività del calcolo La creatività del calcolo

A cura di Alessia Brughera, critica d’arte.

Quando l’arte fa i conti con la matematica

Potrebbero sembrare l’una agli antipodi dell’altra: emblema della fantasia la prima, incarnazione della razionalità la seconda. Eppure arte e matematica, manifestazioni tra le più complesse e universali dello spirito umano, da sempre si intrecciano tra loro, muovendosi verso direzioni condivise sospinte entrambe dal desiderio di oltrepassare i propri limiti per allargare i confini della conoscenza.
Nel suo incessante fluire tra immaginazione e logica, l’inesauribile rapporto tra arte e matematica è rintracciabile fin dalle pitture preistoriche, dove la serialità di segni e figure rivela già un bisogno di comunicare attraverso un messaggio coerente.
Con l’avanzare della civiltà, i rimandi alla sfera del calcolo si fanno nell’arte sempre più evidenti e dimostrabili. Se nell’antichità la scienza dei numeri influenza architetti, pittori e scultori nella fase più concettuale del loro operato, con l’avvento dell’era moderna agli impulsi teoretici si accostano quelli formali, con l’utilizzo di elementi legati alla matematica quali vere e proprie componenti espressive. In questo attingere all’affascinante campo razionale, vero è che non sempre gli artisti usano i processi matematici in senso consapevole: spesso infatti emergono casi significativi di maestri che ad essi si avvicinano in modo puramente intuitivo a dimostrazione di come le logiche formali dell’arte seguano d’istinto i modelli della scienza.
Che già nell’antico Egitto la relazione tra arte e matematica fosse più che mai in voga lo attesta la stele di re Get, risalente alla I dinastia, uno dei manufatti più arcaici in cui si fa uso del rapporto aureo. È però con il periodo classico che l’ausilio delle discipline matematiche diventa imprescindibile per raggiungere un equilibrio al di sopra del caos fenomenologico. Da questo momento l’uso della sezione aurea, che si conviene sia stata definita nel VI secolo a. C. dalla scuola pitagorica, viene abilmente sfruttata da molti artisti per conferire una dimensione di piacevolezza estetica alle loro creazioni. Il ricorso a questo principio matematico, definito “divina proportione” e considerato una sorta di chiave mistica dell’armonia, si fa esplicito, talvolta spudorato, in epoca medievale e rinascimentale. Tra coloro che ne hanno fatto un impiego continuo e consapevole c’è Piero della Francesca, “maestro raro nelle difficultà dei corpi regolari, e nell’aritmetica e geometria” come scriveva Giorgio Vasari. La sua Flagellazione di Cristo, datata 1460, è una splendida testimonianza di sintesi tra naturalezza e rigore matematico, con l’uso del rapporto aureo (pari al numero d’oro 1,618, il famoso Phi) nelle corrispondenze fra le due parti del dipinto, quella in primo piano occupata da tre uomini che colloquiano e quella dove Cristo viene percosso.
Una nota più misteriosa ed esoterica nell’utilizzo della matematica si trova invece nella celebre Melancholia di Albrecht Dürer, dove appare il primo esempio in occidente di quadrato magico. Collocato in una posizione evidente, è realizzato in modo che la somma lungo una riga, una colonna o una diagonale sia sempre uguale a 34 mentre le due caselle centrali in basso riportano la data di esecuzione dell’incisione, il 1514.
Ad eccezione del lavoro dureriano, in questi secoli il numero resta più che altro una realtà sottesa che regola la rappresentazione artistica dietro le quinte attraverso simmetrie e proporzioni. Incomincia invece ad affrancarsi dal ruolo di elemento ordinatore nascosto e di nota marginale con l’arrivo definitivo della modernità, momento in cui acquisisce piena autonomia diventando spesso il soggetto dell’opera. È poi con le avanguardie del Novecento che il legame dell’arte con la matematica si fa sostanziale. Formule maestose e squillanti campeggiano in totale libertà nelle tele futuriste: l’esplorazione delle forze numeriche diviene gesto celebrativo nei confronti del progresso e atto ribelle e rivoluzionario verso ogni convenzione. Nel dipinto intitolato Numeri innamorati, del 1923, Giacomo Balla raffigura alcune cifre che richiamano la sequenza di Fibonacci introducendo però anche un intruso che conferisce al quadro un’aura enigmatica. Un’opera, questa, dal chiaro contenuto simbolico e ben rappresentativa di come il numero sia protagonista assoluto del quadro.
Negli stessi anni un altro grande maestro delle avanguardie scrive Punto, linea, superficie, andando a delineare una sorta di geometria qualitativa capace di indagare l’essenza degli elementi della pittura. È l’astrattista Vasilij Kandinskij che incanta con le sue composizioni in cui l’esperienza estetica visiva trova un perfetto equilibrio nei rapporti matematici.
Alla ricerca dell'”espressione pura della misura e della legge armonica” è anche l’artista svizzero Max Bill, che impiega il nastro di Möbius in molte delle sue opere. Senza essere a conoscenza dell’oggetto scoperto dal matematico tedesco, lo individua inconsapevolemente giocando con delle strisce di carta. A metà Novecento nascono così i suoi “nastri senza fine”, sculture con la caratteristica di avere una sola faccia e un solo bordo, esempio perfetto del suo lavoro costantemente sottoposto alle norme della scienza. L’interesse per la matematica ha continuato a solleticare le menti di molti artisti, dai maestri della Pop Art, che considerano le cifre come segni da decontestaulizzare e trasformare in icone della società dei consumi (basti pensare a The Figure Five di Robert Indiana), ai protagonisti dell’Arte Concettuale, che usano logiche seriali e sistemi algebrici per tradurre la necessità di ordinare e ridurre all’essenziale. In questo senso è degno di nota il progetto radicale del pittore francese di origine polacca Roman Opalka che ha lavorato per tutta la vita a un’unica opera utilizzando la progressione numerica: giorno per giorno, dal 1965 alla sua morte nel 2011, ha numerato in bianco una tela nera senza mai fermarsi, schiarendo mano a mano lo sfondo fino ad arrivare a scrivere bianco su bianco. É lo scorrere del tempo impresso in un unico, infinito quadro. Quanto una serie di cifre possa assumere una valenza spirituale lo dimostra anche il lavoro di Mario Merz, esponente dell’Arte Povera, che dal campo matematico ha tratto ciò che meglio poteva rappresentare il tema della circolarità organica, fondamentale nella sua ricerca artistica. Niente più della serie di Fibonacci poteva fare al caso suo, una successione di numeri interi positivi che ha sbalorditivi riscontri in natura, dai petali delle margherite alle squame degli ananas. Il suo Volo dei numeri, del 2000, che si arrampica sulla cupola della Mole Antonelliana a Torino, è un omaggio a questa sequenza euritmica e dinamica, poetica estrinsecazione dell’energia della materia. Dalle liriche sculture nitidamente geometriche di Fausto Melotti ai numeri espressionisti di Emilio Scanavino, passando per i mondi immaginari di Maurits Cornelis Escher, la matematica è stata nell’arte un valido strumento attraverso cui interpretare la realtà profonda e ideare universi magici. E se ancora oggi artisti come Federico Pietrella, che si affida a un timbro datario per delineare le figure dei sui quadri, riducendo i numeri a puri segni grafici, o come il giapponese Tatsuo Miyajima, che crea installazioni con contatori digitali a LED in cui cifre lampeggianti ritmano l’inesorabile fluire del tempo, significa che questo mondo imperfetto da sempre tende a un ordine superiore. E l’arte, nel suo lungo percorso, ha sempre saputo che solo avvicinandosi alla sfera matematica poteva raggiungere un’estetica pura ed essenziale, e così la perfezione.

Photo: L’opera “infinita” di Roman Opalka.

© Riproduzione riservata

WP-Backgrounds Lite by InoPlugs Web Design and Juwelier Schönmann 1010 Wien